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Abstract

Today’s globally networked society places great demand on the dissemination and sharing of information.

While in the past released information was mostly in tabular and statistical form, many situations call today for

the release of specific data (microdata). In order to protect the anonymity of the entities (called respondents)

to which information refers, data holders often remove or encrypt explicit identifiers such as names, addresses,

and phone numbers. De-identifying data, however, provides no guarantee of anonymity. Released information

often contains other data, such as race, birth date, sex, and ZIP code, that can be linked to publicly available

information to re-identify respondents and inferring information that was not intended for disclosure.

In this paper we address the problem of releasing microdata while safeguarding the anonymity of the

respondents to which the data refer. The approach is based on the definition of k-anonymity . A table provides

k-anonymity if attempts to link explicitly identifying information to its content map the information to at least

k entities. We illustrate how k-anonymity can be provided without compromising the integrity (or truthfulness)

of the information released by using generalization and suppression techniques. We introduce the concept of

minimal generalization that captures the property of the release process not to distort the data more than

needed to achieve k-anonymity, and present an algorithm for the computation of such a generalization. We

also discuss possible preference policies to choose among different minimal generalizations.

Index terms:

Privacy, Data Anonymity, Disclosure Control, Microdata Release, Inference, Record Linkage, Security, Informa-

tion Protection.

1 Introduction

Information is today probably the most important and demanded resource. We live in an internetworked society

that relies on the dissemination and sharing of information in the private as well as in the public and governmental

sectors. Governmental, public, and private institutions are increasingly required to make their data electronically

available [8, 18]. If in the past this dissemination and sharing of information was mostly in statistical and tabular
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form, many situations require today that the specific stored data themselves, called microdata, be released. The

advantage of releasing microdata instead of specific precomputed statistics is an increased flexibility and availabil-

ity of information for the users. Microdata files produced by all Census Bureau demographic surveys and Federal

agencies, such as the National Center for Education Statistics, Energy Information Administration, and Internal

Revenue Services are today made available to purchasers and researchers. There are also databases maintained

and released by the Department of Motor Vehicles (DMVs), Health Maintenance Organizations (HMOs), insur-

ance companies, public offices, commercial organizations, and so on. To protect the privacy of the respondents

(individuals, organizations, associations, business establishments, and so on) to which the data refer, released

data are generally “sanitized” by removing all explicit identifiers such as names, addresses, and phone numbers.

Although apparently anonymous, the de-identified data may contain other data, such as race, birth date, sex,

and ZIP code, which uniquely or almost uniquely pertain to specific respondents (i.e., entities to which data

refer) and make them stand out from others [13]. By linking these identifying characteristics to publicly available

databases associating these characteristics to the respondent’s identity, the data recipients can determine to which

respondent each piece of released data belongs, or restrict their uncertainty to a specific subset of individuals.

The large amount of information easily accessible today and the increased computational power available

to the attackers make such linking attacks a serious problem. Information about us is collected every day, as

we join associations or groups, shop for groceries, or execute most of our common daily activities [7, 8]. It has

been estimated that in the United States there are currently about five billion privately owned records that

describe each citizen’s finances, interests, and demographics. Information bureaus such as TRW, Equifax, and

Trans Union hold the largest and most detailed databases on American consumers. Most municipalities sell

population registers that include the identities of individuals along with basic demographics; examples include

local census data, voter lists, city directories, and information from motor vehicle agencies, tax assessors, and

real estate agencies. In some states it is today possible to get access to both the driver’s license and license plate

files for a $25 fee. Typical data contained in these databases may include names, Social Security numbers, birth

dates, addresses, telephone numbers, family status, and employment and salary histories. These data, which are

often publicly distributed or sold, can be used for linking identities and de-identified information, thus allowing

re-identification of the respondents.

The restricted access to information and expensive processing of it, in both time and resources, which

represented a form of protection in the past, does not hold anymore. It is not difficult today for a data recipient

to combine the “de-identified” microdata received with other publicly available data (e.g., voter registers). This

situation has raised particular concerns in the medical and financial field, where microdata, which are increasingly

being released for circulation or research, can be, or have been, subject to abuses compromising the privacy of

individuals [2, 8, 12, 21].

To illustrate the problem, Figure 1 exemplifies a table of medical data to be released. Data have been

de-identified by suppressing names and Social Security Numbers (SSNs) so not to disclose the identities of the

individuals to whom the data refer. However, values of other released attributes, such as ZIP, DateOfBirth,

Race, Sex, and MaritalStatus can also appear in some external table jointly with the individual identity, and
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Medical Data Released as Anonymous

SSN Name Race DateOfBirth Sex ZIP Marital Status HealthProblem

asian 09/27/64 female 94139 divorced hypertension

asian 09/30/64 female 94139 divorced obesity

asian 04/18/64 male 94139 married chest pain

asian 04/15/64 male 94139 married obesity

black 03/13/63 male 94138 married hypertension

black 03/18/63 male 94138 married shortness of breath

black 09/13/64 female 94141 married shortness of breath

black 09/07/64 female 94141 married obesity

white 05/14/61 male 94138 single chest pain

white 05/08/61 male 94138 single obesity

• white 09/15/61 female 94142 widow shortness of breath

Voter List

Name Address City ZIP DOB Sex Party ................

................ ................ ................ ........ ........ ........ ................ ................

................ ................ ................ ........ ........ ........ ................ ................

• Sue J. Carlson 900 Market St. San Francisco 94142 9/15/61 female democrat ................

................ ................ ................ ........ ........ ........ ................ ................

Figure 1: Re-identifying anonymous data by linking to external data

can therefore allow them to be tracked. As illustrated in Figure 1, ZIP, DateOfBirth, and Sex can be linked to

the Voter List to reveal the Name, Address, and City. For instance, in the Medical Data table there is only one

female born on 9/15/61 and living in the 94142 area. This combination, if unique in the external world as well,

uniquely identifies the corresponding bulleted tuple in the released data as pertaining to “Sue J. Carlson, 900

Market Street, San Francisco”, thus revealing that she has reported shortness of breath. (Notice that the

medical information is not assumed to be publicly associated with the individuals, and the desired protection is

to release the medical information in a way that the identities of the individuals cannot be determined. However,

the released characteristics for Sue J. Carlson leads to determine which medical data among those released are

hers.) While this example demonstrated an exact match, in some cases, linking can allow the identification of a

restricted set of individuals to whom the released information could refer.

Several microdata disclosure protection techniques have been developed in the context of statistical databases,

such as scrambling and swapping values and adding noise to the data while maintaining an overall statistical

property of the result [1, 20]. However, many uses require release and explicit management of microdata while

needing truthful information within each tuple. This “data quality” requirement makes inappropriate those

techniques that disturb data and therefore, although preserving statistical properties, compromise the correctness

of the single pieces of information. Among the techniques proposed for providing anonymity in the release

of microdata [13] we therefore focus on two techniques in particular: generalization and suppression, which,
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unlike other existing techniques, such as scrambling or swapping, preserve the truthfulness of the information.1

Techniques for microdata release protection have been proposed and studied, however no formal model has been

proposed for the specific use of generalization and suppression. Recently, two systems, namely Mu-Argus [9]

and Datafly [16], have been released which use suppression and generalization as techniques to provide disclosure

control. However, again, no formal foundations or abstractions have been provided for the techniques employed

by both. Furthermore, approximations made by the systems can suffer from drawbacks, such as generalizing data

more than is needed, like [16], or not providing adequate protection, like [9].

In this paper we provide a formal foundation for the anonymity problem against linking and for the application

of generalization and suppression techniques towards its solution. We introduce the definition of quasi-identifiers

as attributes that can be exploited for linking, and of k-anonymity as characterizing the degree of data protection

with respect to inference by linking. We show how k-anonymity can be ensured in information release by gener-

alizing and/or suppressing part of the data to be disclosed. Within this framework, we introduce the concepts of

generalized table and of minimal generalization. Intuitively, a generalization is minimal if data are not generalized

more than necessary to provide k-anonymity. We present an algorithm to compute a minimal generalization of a

given table. We also introduce the concept of preferred generalization as a minimal generalization that satisfies

defined preference criteria, and discuss possible preference criteria.

For simplicity and concreteness we frame our work in the context of relational database systems. We note,

however, that our approach does not depend on this assumption and can be applied to limit disclosure when

information is represented with other data models.

The remainder of this paper is organized as follows. In Section 2 we introduce basic assumptions and

definitions. In Section 3 we discuss generalization to provide anonymity. In Section 4 we introduce suppression

and illustrate its application complementing generalization. In Section 5 we illustrate an approach to computing

a minimal generalization and prove its correctness. In Section 6 we discuss some preference policies for choosing

among different minimal generalizations. In Section 7 we present comparison with related work. Section 8

concludes the paper.

2 Assumptions and preliminary definitions

We assume the existence of a private table PT to be anonymized for external release. The problem of releasing

multiple tables with non disjoint schemas can be easily reduced to the case considered by us by joining the

tables. For the sake of simplicity, our discussion and examples refer to the privacy and re-identification of

individuals, with the note that our approach is equally applicable to cases where information releases refer to

different kinds of respondents (e.g., business establishments). In the following we therefore use the terms individual

and respondent interchangeably. Since removal of explicit identifiers is the first step to anonymization, we assume

that all explicit identifiers (e.g., names, SSNs, and addresses) of respondents are either encrypted or suppressed,

and we ignore them in the remainder of this paper. We use PT to refer to the private table with explicit identifiers

1We will elaborate more on this in Section 7.
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removed/encrypted.

Borrowing the terminology from [4], we call quasi-identifier a set of attributes in PT that, in combination,

can be linked with external information to re-identify the respondents to whom information refers. It is important

to note that the set of attributes that constitute a quasi-identifier depends on the external information available

to the recipient, as this determines the recipient’s linking ability (not all possible external tables are available

to every possible data recipient). Different quasi-identifiers may therefore need to be considered for different

recipients. In this paper we consider the release with respect to a given data recipient. The consideration of

different quasi-identifiers for different recipients requires the selective application of the approach for the specific

quasi-identifiers depending on the data recipient to whom information has to be released. Similarly, we notice

that more than one quasi-identifier may apply to each given data recipient. In particular, the number of quasi-

identifiers to be considered for each data recipient depends on the different kinds of respondents whose identity

is to be protected. In general, information in each table refers to one kind of respondent, and therefore there

is exactly one quasi-identifier for each possible data recipient. There may however be cases where more quasi-

identifiers need to be considered since data elements in the table to be released refer to more than one kind of

respondent. As an example, consider a table where each tuple contains, in addition to information identifying

the patient (like in Figure 1), also information identifying the doctor, and both identities need to be protected.

In the following, we assume the case of a single quasi-identifier. We also assume that PT contains at most one

tuple for each possible respondent.

Given a table T (A1, . . . , An), a set of attributes {Ai, . . . , Aj} ⊆ {A1, . . . , An}, and a tuple t ∈ T , t[Ai, . . . , Aj ]

denotes the sequence of the values of Ai, . . . , Aj in t, T [Ai, . . . , Aj ] denotes the projection, maintaining duplicate

tuples, of attributes Ai, . . . , Aj in T . Also, |T | denotes T ’s cardinality, that is, the number of tuples in T .

Our goal is to allow the release of information in the private table while ensuring the anonymity of the

information respondents. Guaranteeing complete anonymity is obviously an impossible task. A reasonable ap-

proach consists in giving some measure of the anonymity protection. We do this by introducing the concept of

k-anonymity. A data release is said to satisfy k-anonymity if every tuple released cannot be related to fewer than

k respondents ,2 where k is a positive integer set by the data holder, possibly as the result of a negotiation with

other parties [2, 8]. We can then specify the requirement on the protection of information released against linking

attacks in terms of a k-anonymity constraint on the data release as follows.

Definition 2.1 (k-anonymity requirement) Each release of data must be such that every combination of

values of quasi-identifiers can be indistinctly matched to at least k individuals.

Satisfaction of the k-anonymity requirement requires knowing how many individuals each released tuple

matches. This information can be known precisely only by explicitly linking the released data with externally

available data. With reference to the example in Figure 1, the data holder should link the data in the de-identified

medical table with the voter list as well as with any other table externally available that may contain information

2Note that requiring each released tuple to match with at least k individuals is different from requiring each piece of released

information to match with at least k individuals. For instance, with reference to the abovementioned example, if all the k tuples

matching a set of k individuals have exactly the same value for attribute HealthProblem, the health problem is inevitably disclosed.
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that can be exploited for linking. (Note the use of the term “link” instead of “join”, to denote that this evaluation

may be more complex than a simple join due to the fact that information in external tables may be expressed

in a form different from that of private table PT.) This is obviously an impossible task for the data holder.

Although we can assume that the data holder knows which attributes may appear in external tables and possibly

be available to recipients, and therefore which sets of attributes are quasi-identifiers, the specific values of data in

external tables cannot be assumed. The key to satisfying the k-anonymity requirement is therefore to translate

the requirement in terms of the released data themselves. In order to do that, we require the following assumption

to hold.

Assumption 2.1 All attributes in table PT which are to be released and which are externally available in com-

bination (i.e., appearing together in an external table or in possible joins between external tables)3 to a data

recipient are defined in a quasi-identifier associated with PT.

Although this is not a trivial assumption its enforcement is indeed possible and is today considered in many

practical releases of data [17]. Information contained in external tables is of public knowledge and, often, has been

distributed by the same data holders that need to safeguard anonymity in the release of private data. Besides,

knowing which attributes can be used for linking is a basic requirement for protection. At the worst, pessimistic

approaches can be taken, including in a quasi-identifier some attributes when there is the possibility that they

may be, or become, available to the recipient. In this paper, we therefore assume that quasi-identifiers have been

properly recognized and defined.

We can now introduce the definition of k-anonymity for a table as follows.

Definition 2.2 (k-anonymity) Let T (A1, . . . , An) be a table and QI be a quasi-identifier associated with it. T

is said to satisfy k-anonymity wrt QI iff each sequence of values in T [QI] appears at least with k occurrences in

T [QI].

Under Assumption 2.1, and under the hypothesis that the privately stored table contains at most one tuple

for each respondent to which a quasi-identifier refers, k-anonymity of a released table clearly represents a sufficient

condition for the satisfaction of the k-anonymity requirement. In other words, a table satisfying Definition 2.2

for a given k satisfies the k-anonymity requirement for such a k. Intuitively, if each set of attributes part of

external tables appears in a quasi-identifier associated with the table, and the table satisfies k-anonymity, then

the combination of released data with external data will never allow the recipient to associate each released tuple

with less than k individuals. Consider a quasi-identifier QI; if Definition 2.2 is satisfied, each tuple in PT[QI] has

at least k occurrences. Since the population of the private table is a subset of the population of the outside world,

there will be at least k individuals in the outside world matching these values. Moreover, since all attributes

available outside in combination are included in QI, no additional attributes can be joined to QI to reduce the

cardinality of such a set. Also, no subset of QI can compromise k-anomymity: If a quasi-identifier QI has at

3A universal relation combining external tables can be imagined [19].
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Figure 2: Examples of domain and value generalization hierarchies

least k occurrences for each sequence of values, any subset of attributes in it will appear with k′ ≥ k occurrences,

that is, it will refer to k′ ≥ k individuals.

To illustrate, consider the situation exemplified in Figure 1, but assume that the released data contain two

occurrences of the sequence “white,09/15/61,female,94142,widow”. Then, at least two individuals matching

such sequence will exist in the outside world represented by the voter list, and it will not be possible for the

data recipient to determine which of the two medical records associated with these values of the quasi-identifier

belongs to which of the two individuals. Since k-anonymity with k = 2 was provided in the release, each released

medical record could indistinctly belong to at least two individuals.

Given the assumption and definitions above, and given a private table PT to be released and a quasi identifier

QI, we focus on the problem of producing a version of PT that satisfies k-anonymity wrt QI.

3 Generalizing data

Our first approach to providing k-anonymity is based on the definition and use of generalization relationships

between domains and between values that attributes can assume.

3.1 Generalization relationships

In relational database systems, a domain (e.g., integer, string, date) is associated with each attribute to indicate

the set of values that the attribute can assume. We refer to these domains as ground. We then extend the notion

of domain to capture the generalization process by also assuming the existence of a set of (generalized) domains

containing generalized values and of a mapping between each domain and domains generalization of it. For

instance, ZIP codes can be generalized by dropping, at each generalization step, the least significant (rightmost)

digit; postal addresses can be generalized to the street (dropping the number), then to the city, to the county, to

the state, and so on. This mapping is stated by means of a generalization relationship ≤D. Given two domains

Di and Dj , relationship Di ≤D Dj describes the fact that values in domain Dj are generalization of values in
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domain Di. Generalization relationship ≤D defines a partial order on the set Dom of (ground and generalized)

domains, and is required to satisfy the following conditions:

1. ∀Di, Dj , Dz ∈ Dom : Di ≤D Dj , Di ≤D Dz ⇒ Dj ≤D Dz ∨ Dz ≤D Dj .

2. all maximal elements of Dom are singleton.

Condition 1 states that for each domain Di, the set of domains generalization of Di is totally ordered

and, therefore, each Di has at most one direct generalized domain. This condition ensures determinism in the

generalization process. Condition 2 ensures that all values in each domain can be eventually generalized to a

single value. The definition of the generalization relationship implies the existence, for each domain D ∈ Dom, of

a totally ordered hierarchy, called domain generalization hierarchy, DGHD.

A value generalization relationship, partial order ≤V, is also defined that associates with each value in domain

Di a unique value in domain Dj direct generalization of Di. The value generalization relationship implies the

existence, for each domain D, of a value generalization hierarchy VGHD. It is easy to observe that each

VGHD defines a tree whose leaves are values of D and whose root is the value in the domain that is the maximal

element in DGHD.

Example 3.1 Figure 2 illustrates an example of domain and value generalization hierarchies for domains: Z0,

representing a subset of the ZIP codes of San Francisco, CA; R0, representing races; M0, representing marital

status; and S0, representing sex. The generalization relationship specified for ZIP codes generalizes a 5-digit

ZIP code, first to a 4-digit ZIP code, and then to a 3-digit ZIP code. The other hierarchies in the figure are of

immediate interpretation.

In the remainder of this paper we will often refer to a domain or value generalization hierarchy in terms of

the graph representing all and only the direct generalizations between the elements in it (implied generalizations

do not appear as arcs in the graph). Consequently, we will use the term hierarchy indiscriminately, to denote

either a partially ordered set or the graph representing it. We will explicitly refer to the ordered set or to the

graph when necessary.

Since we will be dealing with sets of attributes, it is useful to visualize the generalization relationship and

hierarchies in terms of tuples composed of elements of Dom or of their values. Given a domain tuple DT =

〈D1, . . . , Dn〉 such that Di ∈ Dom, i = 1, . . . , n, we define the domain generalization hierarchy of DT as DGHDT =

DGHD1 × . . .×DGHDn
, where the Cartesian product is ordered by imposing coordinate-wise order [5]. Since each

DGHDi
is totally ordered, DGHDT defines a lattice with DT as its minimal element and the tuple composed of

the top of each DGHDi
, i = 1, . . . , n as its maximal element. The generalization hierarchy of a domain tuple DT

defines the different ways in which DT can be generalized: Each path from DT to the unique maximal element of

DGHDT in the graph describing DGHDT defines a possible alternative path that can be followed when generalizing

a quasi-identifier QI = {A1, . . . , An} of attributes on domains D1, . . . , Dn. We refer to the set of nodes in each of

such paths together with the generalization relationship between them as a generalization strategy for DGHDT .

In correspondence with each generalization strategy of a domain tuple, there is a value generalization strategy

describing the generalization at the value level.
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Example 3.2 Consider domains R0 (race) and Z0 (ZIP code) whose generalization hierarchies are illustrated

in Figure 2. Figure 3 illustrates the domain generalization hierarchy of the domain tuple 〈R0, Z0〉 together with

the corresponding domain and value generalization strategies. There are three different generalization strategies,

corresponding to the three paths from the bottom to the top element of lattice DGH〈R0,Z0〉.

3.2 Generalized table and minimal generalization

Given a private table PT, our first approach to provide k-anonymity consists of generalizing the values stored

in the table. Intuitively, attribute values stored in the private table can be substituted, upon release, with

generalized values. Since multiple values can map to a single generalized value, generalization may decrease the

number of distinct tuples, thereby possibly increasing the size of the clusters containing tuples with the same

values. We perform generalization at the attribute level. Generalizing an attribute means substituting its values

with corresponding values from a more general domain. Generalization at the attribute level ensures that all

values of an attribute belong to the same domain. However, as a result of the generalization process, the domain

of an attribute can change. Note that, since the domain of an attribute can change and since generalized values

can be used in place of more specific ones, it is important that all the domains in a generalization hierarchy be

compatible. Compatibility can be ensured by using the same storage representation form for all domains in a

generalization hierarchy. In the following, dom(Ai, T ) denotes the domain of attribute Ai in table T .

We start by introducing the definition of generalized table as follows.

Definition 3.1 (Generalized Table) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables defined on the same

set of attributes. Tj is said to be a generalization of Ti, written Ti � Tj, iff

1. |Ti| = |Tj|

2. ∀Az ∈ {A1, . . . , An} : dom(Az , Ti) ≤D dom(Az , Tj)

3. It is possible to define a bijective mapping between Ti and Tj that associates each tuple ti ∈ Ti with a tuple

tj ∈ Tj such that ti[Az ] ≤V tj [Az] for all Az ∈ {A1, . . . , An}.

Definition 3.1 states that table Tj is a generalization of table Ti, defined on the same set of attributes, iff:

(1 ) Ti and Tj have the same number of tuples; (2 ) the domain of each attribute Az in Tj is equal to, or is a

generalization of, the domain of Az in Ti; and (3 ) it is possible to define a bijective mapping associating each

tuple ti in Ti with a tuple tj in Tj such that the value of each attribute Az in tj is equal to, or is a generalization

of, the value of Az in ti.

Example 3.3 Consider table PT illustrated in Figure 4 and the domain and value generalization hierarchies for

R0 and Z0 illustrated in Figure 2. Assume QI = {Race, ZIP} to be a quasi-identifier. The remaining five tables in

Figure 4 are all possible generalized tables for PT. For the clarity of the example, each table reports the domain

for each attribute in the table. With respect to k-anonymity, GT[0,1] satisfies k-anonymity for k = 1, 2; GT[1,0]
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〈asian,94138〉 〈asian,94139〉 〈asian,94141〉 〈asian,94142〉 〈black,94138〉 〈black,94139〉 〈black,94141〉 〈black,94142〉 〈white,94138〉 〈white,94139〉 〈white,94141〉 〈white,94142〉
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Figure 3: Hierarchy DGH〈R0,Z0〉 and corresponding Domain and Value Generalization Strategies
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Race:R0 ZIP:Z0

asian 94138

asian 94139

asian 94141

asian 94142

black 94138

black 94139

black 94141

black 94142

white 94138

white 94139

white 94141

white 94142

PT

Race:R1 ZIP:Z0

person 94138

person 94139

person 94141

person 94142

person 94138

person 94139

person 94141

person 94142

person 94138

person 94139

person 94141

person 94142

GT[1,0]

Race:R1 ZIP:Z1

person 9413*

person 9413*

person 9414*

person 9414*

person 9413*

person 9413*

person 9414*

person 9414*

person 9413*

person 9413*

person 9414*

person 9414*

GT[1,1]

Race:R0 ZIP:Z1

asian 9413*

asian 9413*

asian 9414*

asian 9414*

black 9413*

black 9413*

black 9414*

black 9414*

white 9413*

white 9413*

white 9414*

white 9414*

GT[0,1]

Race:R0 ZIP:Z2

asian 941**

asian 941**

asian 941**

asian 941**

black 941**

black 941**

black 941**

black 941**

white 941**

white 941**

white 941**

white 941**

GT[0,2]

Race:R1 ZIP:Z2

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

GT[1,2]

Figure 4: Examples of generalized tables for PT

satisfies k-anonymity for k = 1, 2, 3; GT[0,2] satisfies k-anonymity for k = 1, . . . , 4, GT[1,1] satisfies k-anonymity

for k = 1, . . . , 6, and GT[1,2] satisfies k-anonymity for k = 1, . . . , 12.

Given a table T , different possible generalizations exist. Not all generalizations, however, can be considered

equally satisfactory. For instance, the trivial generalization bringing each attribute to the highest possible level

of generalization, thus collapsing all tuples in T to the same list of values, provides k-anonymity at the price

of a strong generalization of the data. Such extreme generalization is not needed if a more specific table (i.e.,

containing more specific values) exists which satisfies k-anonymity. This concept is captured by the definition of

k-minimal generalization. To introduce it we first introduce the notion of distance vector.

Definition 3.2 (Distance vector) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables such that Ti � Tj. The

distance vector of Tj from Ti is the vector DVi,j = [d1, . . . , dn] where each dz, z = 1, . . . , n, is the length of the

unique path between Dz =dom(Az , Ti) and dom(Az , Tj) in the domain generalization hierarchy DGHDz
.

Example 3.4 Consider table PT and its generalizations illustrated in Figure 4. The distance vectors between PT

and each of its generalized tables is the vector appearing as a subscript of the table.

We extend the dominance relationship ≤ on integers to distance vectors by requiring coordinate-wise ordering

as follows. Given two distance vectors DV = [d1, . . . , dn] and DV′ = [d′1, . . . , d
′
n], DV ≤ DV′ iff di ≤ d′i for all

i = 1, . . . , n. Moreover, DV < DV′ iff DV ≤ DV′ and DV 6= DV′.

A generalization hierarchy for a domain tuple can be seen as a hierarchy (lattice) on the corresponding

distance vectors. For instance, Figure 5 illustrates the lattice representing the dominance relationship between

the distance vectors corresponding to the possible generalizations of 〈R0, Z0〉. In the following we denote with

VLDT the hierarchy (lattice) of distance vectors corresponding to generalization hierarchy DGHDT .

We can now introduce the definition of k-minimal generalization.

11



www.manaraa.com

〈R1, Z2〉

〈R1, Z1〉 〈R0, Z2〉

〈R1, Z0〉 〈R0, Z1〉
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Figure 5: Hierarchy DGH〈R0,Z0〉 and corresponding lattice on distance vectors

Definition 3.3 (k-minimal generalization) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables such that

Ti � Tj. Tj is said to be a k-minimal generalization of Ti iff

1. Tj satisfies k-anonymity (Definition 2.2)

2. ∀Tz : Ti � Tz, Tz satisfies k-anonymity ⇒ ¬(DVi,z ≤ DVi,j).

Intuitively, a generalization Tj(A1, . . . , An) is k-minimal iff there does not exist another generalization

Tz(A1, . . . , An) satisfying k-anonymity and whose domain tuple is dominated by Tj in the domain generalization

hierarchy of 〈dom(A1, Ti), . . . , dom(An, Ti)〉 (or, equivalently, in the corresponding lattice of distance vectors). If

this were the case, Tj would itself be a generalization for Tz. Note also that a table Ti is the minimal generalization

of itself for all k such that Ti satisfies k-anonymity.

Example 3.5 Consider table PT and its generalized tables illustrated in Figure 4. For k = 2 two k-minimal

generalizations exist, namely GT[1,0] and GT[0,1]. Among the other generalizations satisfying the k-anonymity

requirement, GT[0,2] is not minimal since it is a generalization of GT[0,1]; GT[1,1] cannot be minimal since it is a

generalization of both GT[1,0] and GT[0,1]; GT[1,2] is not minimal since it is a generalization of all of them. Also,

there are only two k-minimal generalized tables for k=3, which are GT[1,0] and GT[0,2].

Note that since k-anonymity requires the existence of k occurrences for each sequence of values only for

attributes in the quasi-identifier, for every minimal generalization Tj of Ti, dom(Az , Ti) = dom(Az , Tj) (or,

equivalently, DVi,j [dz ] = 0) for all attributes Az that do not belong to the quasi-identifier. In other words, the

generalization process operates only on attributes in the considered quasi-identifier.

4 Suppressing data

In Section 3 we discussed how, given a private table PT, a generalized table can be produced which releases a

more general version of the data in PT that satisfies a k-anonymity constraint. Generalization has the advantage

of allowing the release of all the single tuples in the table, although in a more general form. Here, we illustrate

a complementary approach to providing k-anonymity, which is suppression. Suppressing means to remove data

from the table so that they are not released. Like generalization, suppression has been proposed in the context of

12
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Race DOB Sex ZIP MaritalStatus

asian 09/27/64 female 94139 divorced

asian 09/30/64 female 94139 divorced

asian 04/18/64 male 94139 married

asian 04/15/64 male 94139 married

black 03/13/63 male 94138 married

black 03/18/63 male 94138 married

black 09/13/64 female 94141 married

black 09/07/64 female 94141 married

white 05/14/61 male 94138 single

white 05/08/61 male 94138 single

white 09/15/61 female 94142 widow

PT

Race DOB Sex ZIP MaritalStatus

asian 64 not released 941** not released

asian 64 not released 941** not released

asian 64 not released 941** not released

asian 64 not released 941** not released

black 63 not released 941** not released

black 63 not released 941** not released

black 64 not released 941** not released

black 64 not released 941** not released

white 61 not released 941** not released

white 61 not released 941** not released

white 61 not released 941** not released

GT[0,2,1,2,2]

Race DOB Sex ZIP MaritalStatus

person [60-64] female 9413* been married

person [60-64] female 9413* been married

person [60-64] male 9413* been married

person [60-64] male 9413* been married

person [60-64] male 9413* been married

person [60-64] male 9413* been married

person [60-64] female 9414* been married

person [60-64] female 9414* been married

person [60-64] male 9413* never married

person [60-64] male 9413* never married

person [60-64] female 9414* been married

GT[1,3,0,1,1]

Figure 6: An example of table PT and its minimal generalizations

Race DOB Sex ZIP MaritalStatus

asian 09/27/64 female 94139 divorced

asian 09/30/64 female 94139 divorced

asian 04/18/64 male 94139 married

asian 04/15/64 male 94139 married

black 03/13/63 male 94138 married

black 03/18/63 male 94138 married

black 09/13/64 female 94141 married

black 09/07/64 female 94141 married

white 05/14/61 male 94138 single

white 05/08/61 male 94138 single

PT

Race DOB Sex ZIP MaritalStatus

asian 09/64 female 94139 divorced

asian 09/64 female 94139 divorced

asian 04/64 male 94139 married

asian 04/64 male 94139 married

black 03/63 male 94138 married

black 03/63 male 94138 married

black 09/64 female 94141 married

black 09/64 female 94141 married

white 05/61 male 94138 single

white 05/61 male 94138 single

GT[0,1,0,0,0]

Figure 7: An example of table PT and its minimal generalization

13



www.manaraa.com

Race:R0 ZIP:Z0

asian 94138

asian 94138

asian 94142

asian 94142

black 94138

black 94141

black 94142

white 94138

PT

Race:R1 ZIP:Z0

person 94138

person 94138

person 94142

person 94142

person 94138

person 94141

person 94142

person 94138

GT[1,0]

Race:R0 ZIP:Z1

asian 9413*

asian 9413*

asian 9414*

asian 9414*

black 9413*

black 9414*

black 9414*

white 9413*

GT[0,1]

Race:R0 ZIP:Z2

asian 941**

asian 941**

asian 941**

asian 941**

black 941**

black 941**

black 941**

white 941**

GT[0,2]

Race:R1 ZIP:Z1

person 9413*

person 9413*

person 9414*

person 9414*

person 9413*

person 9414*

person 9414*

person 9413*

GT[1,1]

Race:R1 ZIP:Z2

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

GT[1,2]

Figure 8: A table PT and its generalized tables

micro and macrodata release, and is often used in the context of statistical databases [3, 13]. Here we illustrate

its particular application in complementing generalization to provide k-anonymity.

We apply suppression at the tuple level, that is, a tuple can be suppressed only in its entirety. Suppression

is used to “moderate” the generalization process when a limited number of outliers (i.e., tuples with less than k

occurrences) would force a great amount of generalization. To clarify, consider the table illustrated in Figure 1,

whose projection on quasi-identifier QI = {Race, DateOfBirth, Sex, ZIP, MaritalStatus} is reported in Figure

6, and suppose k-anonymity with k = 2 is to be provided. Suppose also that attribute DateOfBirth has a domain

date with the following generalizations: from the specific date (mm/dd/yy) to the month (mm/yy) to the year (yy)

to a 5-year interval (e.g., [60-64]) to a 10-year interval (e.g., [60,69]) and so on.4 It is easy to see that because

of the last tuple in the table, for the k-anonymity requirement to be satisfied, we need two steps of generalization

on DateOfBirth, one step of generalization on ZIPCode, one step of generalization on MaritalStatus, and either

one further step on Sex, ZIPCode, and MaritalStatus, or, alternatively, on Race and DateOfBirth. The two

possible minimal generalizations are illustrated in Figure 6. It can be easily seen that had the last tuple not

been present, k-anonymity for k = 2 could have been simply achieved by one step of generalization on attribute

DateOfBirth, as illustrated in Figure 7. Suppressing the tuple therefore allows the satisfaction of the k-anonymity

requirement with less generalization.

In illustrating how suppression interplays with generalization to provide k-anonymity, we begin by re-stating

the definition of generalized table as follows.

Definition 4.1 (Generalized Table - with suppression) Let Ti(A1, . . . , An) and Tj(A1, . . . , An) be two tables

defined on the same set of attributes. Tj is said to be a generalization of Ti, written Ti � Tj, iff

1. |Tj| ≤ |Ti|

2. ∀Az ∈ {A1, . . . , An} : dom(Az , Ti) ≤D dom(Az , Tj)

4Note that although generalization may seem to change the format of the data, compatibility can be assured by using the same

representation form. For instance, in an actual implementation, the generalization to the month can be represented, instead of a pair

mm/yy, as a triple mm/dd/yy where the day field is set to a predefined specific value.
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3. It is possible to define an injective mapping between Ti and Tj that associates each tuple ti ∈ Ti with a tuple

tj ∈ Tj such that ti[Az ] ≤V tj [Az] for all Az ∈ {A1, . . . , An}.

The definition above differs from Definition 3.1 since it allows tuples appearing in Ti not to have any cor-

responding generalized tuple in Tj. Intuitively, tuples in Ti not having any corresponding tuple in Tj are tuples

that have been suppressed.

Definition 4.1 allows any amount of suppression in a generalized table. Obviously, we are not interested in

tables that suppress more tuples than necessary to achieve k-anonymity at a given level of generalization. This

is captured by the following definition.

Definition 4.2 (Minimal required suppression) Let Ti be a table and Tj a generalization of Ti satisfying

k-anonymity. Tj is said to enforce minimal required suppression iff ∀Tz : Ti � Tz,DVi,z = DVi,j , Tz satisfies

k-anonymity ⇒ |Tj | ≥ |Tz|.

Definition 4.2 states that a table Tj enforces minimal required suppression wrt a k-anonymity requirement if

there does not exist another generalization Tz with the same distance vector as Tj that satisfies the k-anonymity

requirement by suppressing less tuples.

Example 4.1 Consider table PT and its generalizations illustrated in Figure 8. The tuples written in bold

and marked with double lines in each table are the tuples that must be suppressed to achieve k-anonymity of 2.

Suppression of any set of tuples not including them all would not reach the required anonymity. Suppression of

any superset would be unnecessary (not satisfying minimal required suppression).

With suppression, more generalized tables with the same distance vector and satisfying a given k-anonymity

requirement may exist. However, as the lemma below states, there is a unique generalization Tj among them which

enforces minimal required suppression. Any other generalization providing k-anonymity with the same distance

vector would suppress more tuples, and more precisely a proper superset of the tuples suppressed in Tj. (Condition

|Tj | ≥ |Tz| in Definition 4.2 can equivalently be expressed as Tj ⊇ Tz). Intuitively, the generalization enforcing

minimal required suppression at a given distance vector can be obtained by first applying the generalization

corresponding to the distance vector and then removing all and only the tuples that appear with fewer than k

occurrences.

Lemma 4.1 Let Ti(A1, . . . , An) be a table, Di be the domain of Ai, and hi be the height of domain generalization

hierarchy DGHDi
, i = 1, . . . , n. For all distance vectors DV, [0, . . . , 0] ≤ DV ≤ [h1, . . . , hn] and integers k,

0 < k ≤ |Ti|: 1) There exists one and only one generalized table Tj, Ti � Tj, DVi,j = DV, satisfying k-anonymity

by enforcing minimal required suppression; 2) ∀Tz, Ti � Tz, Tz satisfies k-anonymity, DVi,j = DVi,z : Tz 6= Tj ⇒

Tj ⊃ Tz.

Proof. Consider table Ti and a generalization Tj of it, which satisfies k-anonymity and enforces minimal

required suppression. Note that such a Tj, possibly empty, always exists. Consider a table Tz, generalization of

Ti, that provides k-anonymity such that Tz 6= Tj and DVi,j = DVi,z . Let T = Tz − Tj be the set of tuples that
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Race:R0 ZIP:Z0

asian 94138

asian 94138

asian 94142

asian 94142

GT[0,0]

Race:R1 ZIP:Z0

person 94138

person 94138

person 94142

person 94142

person 94138

person 94142

person 94138

GT[1,0]

Race:R0 ZIP:Z1

asian 9413*

asian 9413*

asian 9414*

asian 9414*

black 9414*

black 9414*

GT[0,1]

Race:R0 ZIP:Z2

asian 941**

asian 941**

asian 941**

asian 941**

black 941**

black 941**

black 941**

GT[0,2]

Race:R1 ZIP:Z1

person 9413*

person 9413*

person 9414*

person 9414*

person 9413*

person 9414*

person 9414*

person 9413*

GT[1,1]

Race:R1 ZIP:Z2

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

person 941**

GT[1,2]

Figure 9: Generalized tables, with suppression, for table PT of Figure 8

are in Tz and are not in Tj . Table Tj ∪ T is a table with distance vector equal to DVi,j and DVi,z . Since both

Tj and Tz satisfy k-anonymity, also Tj ∪ T trivially does. Moreover, |Tj ∪ T | ≥ |Tj|. Since Tj enforces minimal

required suppression, |Tj | ≥ |Tj ∪ T |. Hence, |Tj | = |Tj ∪ T | that, since T ∩ Tj = ∅, implies T = ∅ that, together

with Tz 6= Tj, implies Tj ⊃ Tz, which proves the lemma. 2

Given Lemma 4.1, in the remainder of the paper we restrict our attention to generalizations enforcing minimal

required suppression and, when referring to the generalization satisfying a k-anonymity constraint at a given

distance vector, we will intend the unique generalization with that distance vector that satisfies the k-anonymity

constraint enforcing minimal required suppression. To illustrate, with reference to table PT in Figure 8 and with

respect to k-anonymity with k=2, we refer to its generalizations where tuples in bold have been suppressed, as

illustrated in Figure 9.

Generalization and suppression are two different approaches to obtaining, from a given table, a table that

satisfies k-anonymity. The two approaches clearly produce the best results when jointly applied. For instance, we

have already observed how, with respect to the table in Figure 1 and the k-anomymity requirement with k = 2,

generalization alone is unsatisfactory (see Figure 6). Suppression alone, on the other side, would also behave

badly as it would require suppression of all the tuples in the table. Joint application of the two techniques allows,

instead, the release of a table like the one in Figure 7, where the last tuple has been suppressed. The question

is therefore whether it is better to generalize, at the cost of less precision in the data, or to suppress, at the cost

of loosing completeness. From observations of real-life applications and requirements, we assume the following.

We consider an acceptable suppression threshold MaxSup is specified stating the maximum number of suppressed

tuples that is considered acceptable. Within this acceptable threshold, suppression is considered preferable to

generalization (in other words, it is better to suppress more tuples than to enforce more generalization). The

reason for this is that suppression affects single tuples, whereas generalization modifies all the values associated

with an attribute, thus affecting all the tuples in the table. Tables that enforce suppression beyond MaxSup are

considered unacceptable.

Given these assumptions, we can now restate the definition of k-minimal generalization taking suppression
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into consideration.

Definition 4.3 (k-minimal generalization - with suppression) Let Ti and Tj be two tables such that Ti � Tj,

and let MaxSup be the specified threshold of acceptable suppression. Tj is said to be a k-minimal generalization of

a table Ti iff

1. Tj satisfies k-anonymity enforcing minimal required suppression (Definitions 2.2 and 4.2).

2. |Ti| − |Tj | ≤ MaxSup

3. ∀Tz : Ti � Tz and Tz satisfies conditions 1 and 2 ⇒ ¬(DVi,z < DVi,j).

Intuitively, generalization Tj is k-minimal iff it satisfies k-anonymity, it does not enforce more suppression

than it is allowed, and there does not exist another generalization satisfying these conditions with a distance

vector smaller than that of Tj. (Note that from Lemma 4.1, we do not need to consider tables with the same

distance vector as Tj.)

Example 4.2 Consider private table PT illustrated in Figure 8, the k-anonymity requirement with k=2, and the

consequent generalizations providing k-anonymity illustrated in Figure 9. Depending on the acceptable suppression

threshold, the following generalizations are considered minimal:

MaxSup = 0 : GT[1,1] (GT[0,0], GT[1,0], GT[0,1], and GT[0,2] suppress more tuples than it is allowed, GT[1,2] is

not minimal because of GT[1,1]);

MaxSup = 1 : GT[1,0] and GT[0,2] (GT[0,0] and GT[0,1] suppress more tuples than it is allowed, GT[1,1] is not

minimal because of GT[1,0], and GT[1,2] is not minimal because of GT[1,0] and GT[0,2]);

MaxSup = 2, 3 : GT[1,0] and GT[0,1] (GT[0,0] suppresses more tuples than it is allowed, GT[0,2] is not minimal

because of GT[0,1], GT[1,1] and GT[1,2] are not minimal because of GT[1,0] and GT[0,1]).

MaxSup ≥ 4 : GT[0,0] (all the other generalizations are not minimal because of GT[0,0]).

A question to be addressed is what is actually to be suppressed, when suppression is applied. In the discussion

above we talked about suppression of a tuple meaning that all the elements of attributes in the quasi-identifier

(and not a proper subset of them) are suppressed. It is then to see whether the corresponding elements not

belonging to the quasi-identifier (HealthProblem in the example of Figure 1) should be suppressed also or should

be released. If they are suppressed, then no information on the stored data is conveyed to the recipient, although

the number of suppressed tuples could be safely released to allow consideration of the fact that some tuples have

been suppressed in aggregated data or statistics that the recipient may wish to derive. We observe that such a

complete blanking of information is not necessary when the null quasi-identifier values could refer to more than k

entities in the universe of discourse. In other words, it is not necessary when there are more than k individuals in

the external tables to whom the tuples whose quasi-identifier elements have been suppressed could refer, situation

this that appears very likely.
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5 Computing a k-minimal generalization

We have defined the concept of k-minimal generalization corresponding to a given private table. Here we illustrate

an approach to computing such a generalization.

In the following we restrict our attention to private tables with cardinality at least equal to the k-anonymity

requirement to be satisfied (i.e., |PT| ≥ k). Trivially, the problem would not make sense otherwise, since if |PT| < k

then no generalization of PT (but the empty table) exists which satisfies k-anonymity. Condition |PT| ≥ k

is therefore a necessary condition for k-anonymity. Since the maximal element of each domain generalization

hierarchy is singleton (Condition 2 in Section 3) the condition is also sufficient. Also, given that the k-anonymity

property is required only for attributes in quasi-identifiers, we consider only attributes in the considered quasi-

identifier. More precisely, instead of considering the whole table PT to be generalized, we consider its projection

PT[QI], keeping duplicates, on the attributes of the considered quasi-identifier QI.

In Section 3 we illustrated the concepts of generalization hierarchy and strategies for a domain tuple.

Given a table T = (A1, . . . , An) = PT[QI], the corresponding domain generalization hierarchy on DT =

〈dom(A1, T ), . . . , dom(An, T )〉 pictures all the possible generalizations and their relationships. Each path (strat-

egy) in it defines a different way in which the generalization process can be enforced. With respect to a strategy,

we can define the concept of locally minimal generalization as the generalization that is minimal, i.e., lowest in

the hierarchy, among those satisfying k-anonymity, with respect to the set of generalizations in the strategy. As

the following theorem states, each k-minimal generalization is locally minimal with respect to some strategy.

Theorem 5.1 Let Ti(A1, . . . , An) = PT[QI] be a table to be generalized and let DT = 〈D1, . . . , Dn〉, where

Dz = dom(Az , Ti), z = 1, . . . , n, be the domain tuple of the corresponding ground domains. Every k-minimal

generalization of Ti is a locally minimal generalization for some strategy of DGHDT .

Proof. By contradiction. Suppose Tj is k-minimal but is not locally minimal with respect to any strategy.

Then, there exists a strategy that contains Tj and also contains a generalization Tz that satisfies k-anonymity

by suppressing no more tuples than what is allowed and such that Ti � Tz � Tj , Tz 6= Tj. Hence, Tz satisfies

conditions 1 and 2 of Definition 4.3. Moreover, since Tz � Tj and Tz 6= Tj , then DVi,z < DVi,j . Hence, Tj

cannot be minimal, which contradicts the assumption. 2

It is important to note that since strategies are not disjoint, the converse is not necessarily true, that is,

a generalization locally minimal with respect to a strategy might not be a k-minimal generalization. Consider

Example 4.2, where the different strategies are illustrated in Figure 3, and assume MaxSup = 1. GT[1,1] is locally

minimal with respect to the second strategy. However it is not minimal because of GT[1,0] (appearing in the first

strategy).

From Theorem 5.1, a k-minimal preferred generalization can be naively computed by following each general-

ization strategy from the domain tuple to the maximal element of the hierarchy and stopping, in each strategy, at

the first generalization which satisfies k-anonymity within the allowed suppression threshold. The nonk-minimal

generalizations can then be discarded, and the preferred generalization chosen. The fact that the local minimal

might not necessarily be a minimal solution implies the need to search all the strategies. This process is clearly
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much too costly, given the high number of strategies that should be followed. The number of different strategies

for a domain tuple DT = 〈D1, . . . , Dn〉 is (h1+...+hn)!
h1!...hn! , where each hi is the length of the path from Di to the top

domain in DGHDi
.

The key to cut down such a computation lies in the observation that the number of tuples (outliers) that

need to be removed to satisfy a k-anonymity requirement can only decrease going up in a strategy. Hence,

the cardinality of the table enforcing minimal required suppression to satisfy a k-anonymity constraint can only

increase going up in a strategy. This observation is formalized by the following theorem.

Theorem 5.2 Let Ti = PT[QI] be a table to be generalized and Tj and Tz, with Ti � Tj and Ti � Tz, be two of

its generalizations enforcing minimal required suppression. Then, DVi,j < DVi,z ⇒ |Tj| ≤ |Tz|.

Proof. We suppose the lemma does not hold and derive a contradiction. Suppose DVi,j < DVi,z and

|Tz| < |Tj |. Then, there exists a set T ⊂ Tj of tuples that do not appear (at the more general domain tuple) in

Tz. Let T ′ be the generalization of all the tuples in T at the domain tuple of Tz. Consider T ′
z = Tz ∪ T ′. Since

tuples in T have not been suppressed in Tj , they do not represent outliers in Tj . Hence, T ′ cannot represent

outliers in T ′
z. Then, T ′

z is a table at the same distance vector as Tz which provides k-anonymity and such that

T ′
z ⊃ Tz, which implies |T ′

z| > |Tz|, contradicting the assumption that Tz enforces minimal required suppression.

2

Directly from the theorem above, observing that |Tj| ≤ |Tz| implies (|Ti| − |Tj |) ≥ (|Ti| − |Tz|), we can state

the following.

Corollary 5.1 Let Ti = PT[QI] be a table to be generalized and let Tj and Tz, with Ti � Tj and Ti � Tz, be two

of its generalizations satisfying k-anonymity by enforcing minimal required suppression such that DVi,j < DVi,z.

If |Ti|− |Tj| ≤ MaxSup then |Ti|− |Tz| ≤ MaxSup. Analogously, if |Ti|− |Tz| > MaxSup then |Ti|− |Tj| > MaxSup.

Hence, if a table Tz with distance vector DVi,z cannot provide k-anonymity by suppressing a number of

tuples lower than MaxSup, then also all tables Tj such that DVi,j < DVi,z cannot.

In the following, we make use of the information on the heights of distance vectors. The height of a distance

vector DV in a distance vector lattice VL, denoted by height(DV, VL), is the length of the paths5 from node DV

to the minimal element of VL. The following lemma states the relationships between distance vectors and heights.

Lemma 5.1 Let VL = 〈DV,≤〉 be a lattice of distance vectors. ∀DVi,j ,DVi,z ∈ DV : DVi,j < DVi,z ⇒

height(DVi,j , VL) < height(DVi,z , VL).

Proof. Trivially, since DVi,j < DVi,z , DVi,z dominates DVi,j in VL. Then, there is a path from DVi,z to

the bottom element of the lattice passing by DVi,j . Hence, the height of DVi,z is at least equal to the sum of

height(DVi,j , VL) and the length of the path from DVi,z to DVi,j . 2

Note that since the minimal element is the zero vector and each edge corresponds to incrementing of 1 exactly

one element in a distance vector, the height of a vector in the lattice is the sum of the elements in it, that is,

height([d1, . . . , dn], VL) =
∑n

i=1 di.

5All such paths have the same length.
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Find vector

INPUT: Table Ti = PT[QI] to be generalized, anonymity requirement k, suppression threshold MaxSup, lattice VLDT of the distance

vectors corresponding to the domain generalization hierarchy DGHDT , where DT is the tuples of the domains of the quasi-identifier

attributes.

OUTPUT: The distance vector sol of a generalized table GTsol that is a k-minimal generalization of PT[QI] according to Definition 4.3.

METHOD: Executes a binary search on VLDT based on height of vectors in VLDT .

1. low :=0; high:=height(⊤, VLDT ); sol := ⊤

2. while low< high

2.1 try := ⌊ low+high

2
⌋

2.2 Vectors := {vec | height(vec,VLDT ) = try}

2.3 reach k := false

2.4 while Vectors 6= ∅ ∧ reach k 6= true do

Select and remove a vector vec from Vectors

if satisfies(vec,k,Ti,MaxSup) then sol := vec; reach k := true

2.5 if reach k = true then high:= try else low:= try + 1

3. Return sol

Figure 10: An algorithm for computing a vector corresponding to a k-minimal generalization

By using the height of the vectors, we can apply the reasoning above across strategies. Let ⊤ be the maximal

element of VL. For each height h, 0 ≤ h ≤ height(⊤, VL), if there is no vector at height h corresponding to a

generalization that satisfies conditions 1 and 2 of Definition 4.3, then there cannot be any vector corresponding to

a generalization which satisfies these conditions at height lower than h. We exploit this property by searching for

a vector producing a k-minimal generalization through the application of a binary search approach on the lattice

VL of distance vectors corresponding to the domain generalization hierarchy of the domains of the quasi-identifier

attributes. Consider lattice VL of height h = height(⊤, VL). First, the vectors at height ⌊h
2 ⌋ are evaluated. If

there is a vector that satisfies k-anonymity within the suppression threshold established at height ⌊h
2 ⌋, then the

vectors at height ⌊h
4 ⌋ are evaluated, otherwise those at height ⌊ 3h

4 ⌋, and so on, until we reach the lowest height

for which there is a distance vector that satisfies k-anonymity by suppressing no more tuples than MaxSup. The

process, whose interpretation is straightforward, is reported as algorithm Find vector in Figure 10. The call to

function satisfies returns true if the generalization enforcing minimal required suppression at distance vector vec

satisfies k-anonymity by suppressing no more tuples than MaxSup. It returns false otherwise.

The following theorem states the correctness of the process.

Theorem 5.3 Let Ti = PT[QI] be a table to be generalized, k ≤ |PT| the k-anonymity constraint, and MaxSup

the maximum suppression threshold allowed. 1) Find vector always terminates by returning a vector sol. 2) Table

GTsol, generalization of Ti at distance vector sol providing k-anonymity by enforcing minimal required suppression,

is a k-minimal solution according to Definition 4.3.

Proof. At every iteration of the cycle in step 2, low ≤ try < high . At the end of the cycle, either low is

set to try + 1, or high is set to try. Hence, condition low < high of the while statement will eventually evaluate

false. Variable sol is initialized to the top of the vector lattice, which, by the assumption of singleton maximal
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t1 [0,0,0,0,0] [0,1,0,0,0] [0,2,1,0,1] [0,2,1,0,1] [1,3,1,1,1] [1,3,1,1,1] [1,1,0,2,1] [1,1,0,2,1] [1,3,1,1,2] [1,3,1,1,2] [1,3,0,2,1]

t2 [0,1,0,0,0] [0,0,0,0,0] [0,2,1,0,1] [0,2,1,0,1] [1,3,1,1,1] [1,3,1,1,1] [1,1,0,2,1] [1,1,0,2,1] [1,3,1,1,2] [1,3,1,1,2] [1,3,0,2,1]

t3 [0,2,1,0,1] [0,2,1,0,1] [0,0,0,0,0] [0,1,0,0,0] [1,3,0,1,0] [1,3,0,1,0] [1,2,1,2,0] [1,2,1,2,0] [1,3,0,1,2] [1,3,0,1,2] [1,3,1,2,1]

t4 [0,2,1,0,1] [0,2,1,0,1] [0,1,0,0,0] [0,0,0,0,0] [1,3,0,1,0] [1,3,0,1,0] [1,2,1,2,0] [1,2,1,2,0] [1,3,0,1,2] [1,3,0,1,2] [1,3,1,2,1]

t5 [1,3,1,1,1] [1,3,1,1,1] [1,3,0,1,0] [1,3,0,1,0] [0,0,0,0,0] [0,1,0,0,0] [0,3,1,2,0] [0,3,1,2,0] [1,3,0,0,2] [1,3,0,0,2] [1,3,1,2,1]

t6 [1,3,1,1,1] [1,3,1,1,1] [1,3,0,1,0] [1,3,0,1,0] [0,1,0,0,0] [0,0,0,0,0] [0,3,1,2,0] [0,3,1,2,0] [1,3,0,0,2] [1,3,0,0,2] [1,3,1,2,1]

t7 [1,1,0,2,1] [1,1,0,2,1] [1,2,1,2,0] [1,2,1,2,0] [0,3,1,2,0] [0,3,1,2,0] [0,0,0,0,0] [0,1,0,0,0] [1,3,1,2,2] [1,3,1,2,2] [1,3,0,1,1]

t8 [1,1,0,2,1] [1,1,0,2,1] [1,2,1,2,0] [1,2,1,2,0] [0,3,1,2,0] [0,3,1,2,0] [0,1,0,0,0] [0,0,0,0,0] [1,3,1,2,2] [1,3,1,2,2] [1,3,0,1,1]

t9 [1,3,1,1,2] [1,3,1,1,2] [1,3,0,1,2] [1,3,0,1,2] [1,3,0,0,2] [1,3,0,0,2] [1,3,1,2,2] [1,3,1,2,2] [0,0,0,0,0] [0,1,0,0,0] [0,2,1,2,2]

t10 [1,3,1,1,2] [1,3,1,1,2] [1,3,0,1,2] [1,3,0,1,2] [1,3,0,0,2] [1,3,0,0,2] [1,3,1,2,2] [1,3,1,2,2] [0,1,0,0,0] [0,0,0,0,0] [0,2,1,2,2]

t11 [1,3,0,2,1] [1,3,0,2,1] [1,3,1,2,1] [1,3,1,2,1] [1,3,1,2,1] [1,3,1,2,1] [1,3,0,1,1] [1,3,0,1,1] [0,2,1,2,2] [0,2,1,2,2] [0,0,0,0,0]

Figure 11: Distance vectors between the tuples of table PT in Figure 6

domains and |PT| ≥ k trivially satisfies k-anonymity with no suppression. The value of sol is modified in step 2.4

to be a vector corresponding to a generalized table Tj which suppresses fewer tuples than MaxSup. Hence, the

algorithm always returns a vector that satisfies k-anonymity by suppressing fewer tuples than MaxSup. Suppose

then that the algorithm returns a vector sol = DVi,j corresponding to a generalization which is not k-minimal

according to Definition 4.3. Since DVi,j does not correspond to a minimal solution, a vector DVi,z < DVi,j

exists corresponding to a generalized table that satisfies Conditions 1 and 2 of Definition 4.3. By Lemma 5.1,

height(DVi,z, VLDT ) < height(DVi,j , VLDT ). Since the cycle terminated, condition low < high evaluated false.

high is the last (lowest) level, among those examined, at which a solution sol has been found. When the algorithm

terminates, low ≥ high = height(sol = DVi,j , VLDT ) > height(DVi,z, VLDT ). Hence, low must have been modified

in some cycle of the search to a value l + 1 > height(DVi,z, VLDT ). Then, after the evaluation of such cycle

reach k evaluated false meaning no vector was found at height l corresponding to a generalization which satisfied

k-anonymity by suppressing fewer tuples than MaxSup. Let DVi,l be a vector with height l and such that

DVi,l > DVi,z (since each strategy is a path from the bottom to the top of the lattice such a vector always exists).

Let Tl (Tz resp.) be the generalized table with vector DVi,l (DVi,z resp.) satisfying k-anonymity by enforcing

minimal required suppression. Hence |Ti| − |Tl| > MaxSup, which by Theorem 5.2 (see also Corollary 5.1) implies

|Ti| − |Tz| > MaxSup. Hence, Tz also suppresses more tuples than MaxSup and cannot be a solution, which leads

us to a contradiction. 2

Function satisfies can be executed computing the generalization and evaluating the size of the resulting

clusters of tuples. We briefly sketch here an approach to execute satisfies without the need of such a computation.

The approach makes use of the concept of distance vector between tuples. Let T be a table and x, y ∈ T be two

tuples such that x = 〈v′1, . . . , v
′
n〉 and y = 〈v′′1 , . . . , v′′n〉 where v′i and v′′i are values in domain Di, for i = 1 . . . , n.

The distance vector between x and y is the vector Vx,y = [d1, . . . , dn] where di is the (equal) length of the

two paths from v′i and v′′i to their closest common ancestor in the value generalization hierarchy VGHDi
(or, in

other words, the distance from the domain of v′i and v′′i to the domain at which they generalize to the same value

vi). For instance, with reference to the PT illustrated in Figure 4 and the hierarchies in Figure 3, the distance

vector between 〈asian,94139〉 and 〈black,94139〉 is [1,0], at which they both generalize to 〈person,94139〉.

Intuitively, the distance vector Vx,y between two tuples x and y in table Ti is the distance vector DVi,j between

Ti and the table Tj, with Ti � Tj where the domains of the attribute in Tj are the most specific domains for
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which x and y generalize to the same tuple t. By looking at the distance vectors between the tuples in a table we

can determine whether a generalization at a given vector satisfies k-anonymity by suppressing fewer tuples than

MaxSup without computing the generalization. More precisely, we can determine, for each distance vector DV, the

minimum required suppression for the k-anonymity constraint to be satisfied by the generalization corresponding

to DV. The approach works as follows. Let Ti = PT[QI] be the table to be considered. For each distinct

tuple x ∈ Ti determine count(x, Ti) as the number of occurrences of x in Ti. Build a matrix VT with a row for

each of the different outliers (i.e., tuples with less than k occurrences) and a column for each different tuple in

the table. Entry VT[x, y] contains the distance vector tuples x and y, that is, VT[x, y] = Vx,y. (Note that the

table is symmetric so only half on it actually needs to be computed.) Now, let vec be the distance vector of a

generalization to consider as a potential solution. For each row x, compute Cx as the sum of the occurrences

count(y, Ti) of tuples y (column of the matrix) such that VT[x, y] ≤ vec. These are tuples that at generalization

vec would generalize to the same tuple as x, and the sum of their occurrences is the size of the resulting cluster.

Determine then req sup as the sum of the occurrences of all the outlier tuples x (row of the matrix) such that

Cx so computed is smaller than k, that is, req sup =
∑

x|Cx<k count(x, Ti). Intuitively, req sup is the number of

tuples that would still be outliers in the generalization corresponding to distance vector vec, and which would

therefore need to be removed for the k-anonymity requirement to be satisfied. Hence, if req sup ≤ MaxSup the

generalization with distance vector vec satisfies k-anonymity by suppressing less tuples than the threshold allowed.

Otherwise it does not.

Note that the information on the distance vectors between tuples in PT[QI] can also be exploited to restrict

the set of vectors to be considered by algorithm Find vector. It is easy to see in fact that all the non null

vectors which are minimal among the vectors in a row x with count(x, PT) > MaxSup represent lower bounds

for solutions not suppressing x, and then no solution including tuple x can exist below the lowest height of such

vectors. Moreover, the least upper bound of the vectors in the table represents an upper bound for the solution

(any vector above corresponds to a solution that is non minimal). Also, the distance vector of any solution

satisfying Definition 4.3 will have, for each attribute Ai, a distance di that appears for Ai in some entries of the

matrix. More precisely, if [d1, . . . , dn] represents a potential solution, for some value of k and MaxSup, then for

each i = 1, . . . , n there must exist a distance vector [d′1, . . . , d
′
n] between an outlier and some tuple in the table

with di = d′i.

Example 5.1 Consider the table PT[QI] of Figure 6, whose table of distance vectors is illustrated in Figure 11,

and assume MaxSup = 0. By looking at the last row of the table in Figure 11, we note that any solution for PT

which does not suppress tuple t11 will have to dominate either [0,2,1,2,2] or [1,3,0,1,1], and that no solution not

suppressing t11 can be found below height 6. Also, the least upper bound of the vectors in the table is [1, 3, 2, 2, 2].

Hence, any solution will be dominated by it and no minimal solution can be found above level 10.
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6 Preferences

In the previous section we illustrated an algorithm to retrieve a k-minimal generalization. It is clear from

Section 4 that a table may have more than one minimal generalization satisfying a k-anonymity constraint for a

suppression threshold. This is completely legitimate since the definition of “minimal” only captures the concept

that the least amount of generalization and suppression necessary to achieve k-anonymity is enforced. However,

multiple solutions may exist which satisfy this condition. The algorithm illustrated in the previous section returns

a k-minimal generalization with the lowest height among all those existing. Although this may be considered a

generally acceptable preference criteria, other preference criteria may exist depending on subjective measures and

preferences of the data recipient. For instance, depending on the use of the released data, it may be preferable to

generalize some attributes instead of others. We outline here some simple preference policies that can be applied in

choosing a preferred minimal generalization. To do that we first introduce the notion of relative distance between

attributes and absolute and relative distance between tables. Let Ti(A1, . . . , An) be a table and Tj(A1, . . . , An)

be one of its generalizations with distance vector DVi,j = [d1, . . . , dn]. We refer to dz as the absolute distance of

attribute Az in the two tables. The relative distance rdz of each attribute Az is obtained by dividing this absolute

distance over the total height hz of the domain generalization hierarchy of dom(Az, Ti), i.e., rdz = dz

hz
. Hence, we

define the absolute (relative resp.) distance of Tj from Ti, written Absdisti,j (Reldisti,j resp.), as the sum of the

absolute (relative resp.) distance for each attribute. Formally, Absdisti,j =
∑n

z=1 dz , and Reldisti,j =
∑n

z=1
dz

hz
.

Given those distance measures we can outline the following basic preference policies:

Minimum absolute distance prefers the generalization(s) that has the smallest absolute distance, that is,

with the smallest total number of generalization steps (regardless of the hierarchies on which they have

been taken).

Minimum relative distance prefers the generalization(s) that has the smallest relative distance, that is, that

minimizes the total number of relative steps. A step is made relative by dividing it over the height of the

domain hierarchy to which it refers.

Maximum distribution prefers the generalization(s) that contains the greatest number of distinct tuples.

Minimum suppression prefers the generalization(s) that suppresses less tuples, i.e., has the greatest cardinality.

Example 6.1 Consider Example 4.2. Suppose MaxSup = 1. Minimal generalizations are GT[1,0] and GT[0,2].

Under minimum absolute distance, GT[1,0] is preferred. Under minimum relative distance, maximum distribution,

and minimum suppression policies, the two generalizations are equally preferable. Suppose MaxSup = 2. Minimal

generalizations are GT[1,0] and GT[0,1]. Under the minimum absolute distance policy, the two generalizations are

equally preferable. Under the minimum suppression policy, GT[1,0] is preferred. Under the minimum relative

distance and the maximum distribution policies, GT[0,1] is preferred.

The list above is obviously not complete and additional preference policies can be though of, which may

be useful in certain releases. Other possible policies may include: preferring the generalization with the highest
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absolute/relative distance peak; or that generalizes the minimum number of attributes (regardless of the number

of steps); or the maximum number of attributes (thus distributing the generalization requirements over a large

set). Preference criteria can also be specified in terms of any set of constraints on distance vectors or tables. For

instance, explicit preferences can be specified stating that it is better to generalize certain attributes (because not

useful in the specific data release) instead of others. The specific preference policy to use, of course, depends on

the specific use for the released data. Examination of an exhaustive set of possible policies is outside the scope of

this paper. The specific preference policy to be applied to a given data release may be specified by the requester

at the time of access, by the data holder, or by both of them jointly.

It is easy to see that since the absolute distance of a domain tuple is exactly the height of the corresponding

distance vector, the algorithm reported in Figure 10 returns the solution at the minimal absolute distance.

Application of specific preference policies, which cannot exploit properties of the hierarchy, may require the

computation of all the k-minimal solutions to retrieve the one to be preferred. The algorithm for retrieving all

the solutions can be obtained by modifying the one presented in Figure 10 to work on vectors instead of heights

(executing a binary search from the maximal to the minimal element of VLDT considering all the vectors at a

given height and starting a new binary search for each of them as new high or low element depending on whether

it evaluates true or false on satisfies).

Before closing this section we observe that in a similar way, the values of k and MaxSup can also be subject

to some discretionary preference criteria. In particular, k may depend, besides on the recipient’s linking ability,

on negotiation between the involved parties, that is, data holder, recipient, and, possibly, respondents to whom

information refer or laws regulating the protection of their privacy. Within a defined anonymity requirement k,

the suppression threshold can be specified as a preference expressed by the data recipient. Like preference criteria

the suppression threshold does not compromise anonymity, and therefore recipients could require the application

of the measure that best suits their needs with respect to the trade-offs between generalization and suppression.

Generalization and suppression, by providing protection, imply some loss on information being released.

Generalization implies a loss of accuracy, as information released is less precise. Suppression implies a loss of

completeness, as some information is not released. Data quality measures can then be applied evaluating a release

with respect to loss of accuracy and completeness. For instance, accuracy could be measured as the ratio between

the depth of the generalization over the total height of the generalization hierarchy of the corresponding domain

tuple (or equivalently, 1 minus the relative height of the generalization). Completeness could be measured as the

number of released tuples over the total number of tuples in the original table. Since, given a specified k, the more

the suppression allowed the less the generalization needed, the greater the accuracy the lower the completeness

and vice versa. Different suppression thresholds could therefore be applied depending on data quality criteria set

by the data recipients.
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SSN Race DOB Sex ZIP

819181496 black 09/20/65 male 94141

195925972 black 02/14/65 male 94141

902750852 black 10/23/65 female 94138

985820581 black 08/24/65 female 94138

209559459 black 11/07/64 female 94138

679392975 black 12/01/64 female 94138

819491049 white 10/23/64 male 94138

749201844 white 03/15/65 female 94139

985302952 white 08/13/64 male 94139

874593560 white 05/05/64 male 94139

703872052 white 02/13/67 male 94138

963963603 white 03/21/67 male 94138

SSN Race DOB Sex ZIP

black 1965 male 94141

black 1965 male 94141

black 1965 female 94138

black 1965 female 94138

black 1964 female 94138

black 1964 female 94138

white 1964 male 94138

female 94139

white 1964 male 94139

white 1964 male 94139

white 1967 male 94138

white 1967 male 94138

Figure 12: An example of application of µ-argus to produce an anonymized table [17]

7 Related work

The problem of protecting against the ability of data recipients to determine sensitive information from other

information released to them has been considerably studied in the framework of statistical databases [1, 6].

However, most attention has been devoted to the protection of inference in aggregate statistics and tabular data

in contrast to microdata. As a consequence, while a good set of methodologies exist for controlling macrodata

release “many decisions for the disclosure limitation of microdata are based only on precedents and judgement

calls” [13]. Moreover, most approaches to protect the vulnerability of microdata from linking attacks use technique

of data disturbance, which, although safeguarding specific statistical properties compromise the correctness, or

truthfulness, of each specific piece of data (tuple in relational terms) [13]. Their use therefore limits the usefulness

of the released data. The generalization and suppression techniques used in this paper preserve instead information

truthfulness: the data released are always correct, although they may be less precise in case of generalization.

Even suppression, although hiding some data, still preserves information truthfulness. In fact, the recipient is

informed that some tuples, and how many of them, have been suppressed, and therefore are not released. Such an

information can then be taken into consideration by the recipient when processing the released data for producing

statistics, in such a way that these statistics will not result distorted.

The use of the generalization and suppression as techniques to protect microdata release is not a novelty [13].

In particular, approaches like recoding (e.g., releasing the month and year of birth instead of the complete birth

date), rounding (e.g., rounding incomes to the nearest one thousand dollars), and bottom- and top-coding (e.g.,

simply releasing the information that a value is smaller or higher than a given amount instead of releasing the

specific value) can be represented in terms of generalization. Although generalization and suppression have already

been proposed and investigated (often in the combination with other techniques) no formal framework has been

provided for their use.

The work closest to ours is represented by two systems, called µ-argus [9] and Datafly [16], which have also
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investigated the specific use of generalization and suppression techniques to protect microdata release. The two

systems, however, were completely lacking a formalization of the problem and its solutions, which allows us to

reason about the correctness and quality of the resulting table. To our knowledge, this paper is the first paper

providing that. In some sense therefore, our work and the cited systems represent different levels of looking at

the problem and its solutions. We can however attempt some comparison with respect to how generalization and

suppression techniques are enforced in these systems and in our model.

In both systems generalization and suppression are used to derive, from a table to be released, a table where

combinations of attribute values have, provided some allowed suppression, at least a minimum number (called

binsize in [9] and [16]) of occurrences. The way generalization and suppression techniques are enforced in these

systems however presents some shortcomings.

In µ-Argus the user specifies an overall binsize and specifies which attributes are sensitive (i.e., can constitute

a quasi-identifier in our terms) by assigning a value between 0 and 3 to each attribute. 2 and 3-combinations across

sensitive fields are then evaluated and combinations that have fewer occurrences than the specified binsize are

subjected to generalization or suppression. The specified sensitivity values guide the choice of the 2,3-combinations

to be considered. The generalization/suppression process works by considering each sensitive attribute singularly

and then 2- and 3- way combinations determined according to the attribute sensitivity. The responsibility of

whether to generalize or suppress rests with the user and suppression is enforced at the cell level (for minimizing

information loss). The approach proposed in µ-argus has several drawbacks. The major drawback consists in

the fact that despite the binsize requirement, the resulting table may actually allow the recipient to link the

information to fewer than binsize respondents. The main reason for this is that µ-argus only checks 2 and 3- way

combinations and therefore characterizing combinations composed of more than three fields may not be detected.

To illustrate, Figure 12 reports an original table6 and a corresponding release from µ-Argus where k=2, the quasi-

identifier consists of all the attributes and the weighting of the attributes are as follows [17]. The SSN attribute

was tagged “most identifying”; the DOB, Sex, and ZIP attributes were tagged “more identifying”; and the Race

attribute was tagged “identifying”.7 Looking at the resulting table: there is only one tuple with values 〈white,

1964, male, 94138〉. If this situation is true in the outside world (external table) as well, this individual could

be uniquely recognized by the recipient. We can also notice the existence of only one tuple with attribute Sex

equal to female and ZIP code equal to 94139. Again, despite the suppression if this is true in the external data

as well, also this individual can be re-identified by the recipient.

Datafly [16] also uses the notion of binsize as the minimum number of occurrences of values of an attribute

(or combination of them). For each attribute in the table, the data holder specifies an anonymity level, which is

a number between 0 and 1 used by Datafly to determine the binsize that the attribute must satisfy. Intuitively,

0 implies no requirement, 1 implies generalization to the maximum level, and the higher the anonymity value

the higher the binsize. Each recipient is also assigned a profile composed of a value in the range [0,..,1] for every

attribute, describing the probability that the recipient could use the attribute for linking. The binsize to be

6For the sake of simplicity, ZIP codes have been modified to refer to the values used in this paper.

7We refer to [17] for details.
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actually enforced with reference to a specific data release is obtained by weighting the binsize previously specified

with the recipient profile. The higher the value in the profile, the higher the binsize requirement. The specification

of anonymity and user’s profiles allows flexibility in the anonymity requirement specification, although the actual

requirement resulting from a specification may not always be clear. Moreover, control on combination of attributes

is executed only for attributes for which a value of 1 is specified for the recipient, so we consider this case for

comparison. Given a quasi-identifier and a binsize requirement k computed as discussed above, Datafly cycles on

the following basic steps. If the number of outliers is smaller than a specified threshold of suppression, the outliers

are removed and the process terminates. Otherwise, one step of generalization is performed on the attribute with

the largest number of distinct values. This step is repeat until the tuples achieve the binsize requirement (i.e.,

k-anonymity) within the suppression threshold. With reference to our framework, Datafly therefore walks through

a specific generalization strategy, determined at each step by looking at the occurrences of values in the different

attributes, and then stopping at the local minimal solution. As we have already discussed such an approach does

not guarantee minimality of the resulting solution. Datafly can therefore overgeneralize. To illustrate, consider

table PT, and the corresponding generalizations illustrated in Figure 4. As stated in Example 3.5, for k=3 there

are two minimal generalizations, namely, GT[1,0] and GT[0,2]. We assume no suppression. Given PT, Datafly first

generalizes attribute ZIP because it has more distinct values (4 versus the 3 of Race), producing GT[0,1]. Because

k is not reached Datafly then generalizes Race which now has the greater number of distinct values. As a result,

table GT[1,1] is returned which, as already discussed is not minimal; there is no need to generalize both attributes

in this case.

Other related work includes research addressing protection against inference attacks (e.g., [10, 11, 14]).

Inference from linking, as addressed in our work, has similar concerns since both involve drawing conclusions

from released data. However, we are more specifically concerned with the ability of the recipients to “link”

released data to other data available to them.

8 Conclusions

We have addressed the problem of protecting privacy in information release and presented an approach to dis-

closing microdata such that the identities of the respondents cannot be recognized. The anonymity requirement

is expressed by specifying a number k stating the required protection. Enforcing k-anonymity means ensuring

that the information recipient will not be able, even when linking information to external data, to associate each

released tuple with less than k individuals. We have illustrated how the k-anonymity requirement can be trans-

lated, through the concept of quasi-identifiers, in terms of a property on the released table. We have illustrated

how k-anonymity can be enforced by using generalization and suppression techniques. We have introduced the

concept of generalized table, minimal generalization, and minimal required suppression, capturing the property

of a data release to enforce k-anonymity while generalizing and suppressing only what strictly necessary to satisfy

the protection requirement. We have also illustrated an approach to computing such a generalization, and dis-

cussed possible preference policies to choose among different minimal generalizations. A prototype of the system
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is under implementation.

This work represents only a first step towards the definition of a complete framework for information disclosure

control and opens space for future work. Future issues to be investigated include: the investigation of efficient

algorithms to enforce the proposed techniques; the consideration of updates modifying the stored data; the

consideration of multiple releases and consequent possibilities of collusions by multiple recipients or by the same

recipients through multiple queries; the application of the techniques at the finer granularity level of cell; the

investigation of additional techniques for providing k-anonymity; the development of a model for the specification

of protection requirements of the data with respect to different possible classes of data recipients.
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